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REGULAR, PARTIALLY INVARIANT SOLUTIONS OF RANK 1

AND DEFECT 1 OF EQUATIONS OF PLANE MOTION

OF A VISCOUS HEAT-CONDUCTING GAS

UDC 517.957:[532.516.5+536.23]V. V. Bublik

A system of the Navier–Stokes equations of two-dimensional motion of a viscous heat-conducting
perfect gas with a polytropic equation of state is considered. Regular, partially invariant solutions of
rank 1 and defect 1 are studied. A sufficient condition of their reducibility to invariant solutions of
rank 1 is proved. All solutions of this class with a linear dependence of the velocity-vector components
on spatial coordinates are examined. New examples of solutions that are not reducible to invariant
solutions are obtained.
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1. Descriptions of the Model. We consider a system of equations that describe plane motion of a viscous
heat-conducting perfect gas with a polytropic equation of state:

ρ(ut + uux + vuy) = −px + (λ(ux + vy))x + (2µux)x + (µ(uy + vx))y; (1.1)

ρ(vt + uvx + vvy) = −py + (λ(ux + vy))y + (µ(uy + vx))x + (2µvy)y; (1.2)

ρt + (uρ)x + (vρ)y = 0; (1.3)

cV ρ(Tt + uTx + vTy) + p(ux + vy) = (κTx)x + (κTy)y

+ λ(ux + vy)2 + µ(2u2
x + 2v2

y + (uy + vx)2). (1.4)

Here u and v are the components of the velocity vector, ρ is the density, T is the temperature, p = RρT is the
pressure, R is the gas constant, cV is the specific heat at constant volume, µ = m0T

ω and λ = l0T
ω are the first

and second viscosities, and κ = k0T
ω is the thermal conductivity. In our study, we take into account the following

physically meaningful conditions:

ρ > 0, T > 0, 3λ+ 2µ ≥ 0, µ > 0, κ ≥ 0, R > 0, cV > 0. (1.5)

A group classification of system (1.1)–(1.4) given in [1] for the case λ = −(2/3)µ is also valid if there is
no such a dependence between the first and second viscosities. The group admitted by system (1.1)–(1.4) is an
eight-parameter group. This group corresponds to the Lie algebra L8 with the basis

X1 = ∂x, X2 = ∂y, X3 = t∂x + ∂u, X4 = t∂y + ∂v,

X5 = y∂x − x∂y + v∂u − u∂v, X6 = ∂t, X7 = t∂t + x∂x + y∂y − ρ∂ρ,

X8 = x∂x + y∂y + u∂u + v∂v + 2(ω − 1)ρ∂ρ + 2T∂T .
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TABLE 1

Subgroup

number
H J

1 1, 3, 7 + α8 yt−α−1, vt−α, ρt1−2α(ω−1), T t−2α

2 1, 3, 2 + 7 − 8 y − ln t, vt, ρt2ω−1, T t2

3 1, 3, 4 + 7 y/t − ln t, v − ln t, ρt, T

4 1, 3, 4 + 6 t2 − 2y, v − t, ρ, T

5 1, 3, 6 + 8 y e−t, v e−t, ρe2(1−ω)t, T e−2t

6 1, 3, 6 − 8 yet, vet, ρe2(ω−1)t, T e2t

7 1, 3, 6 y, v, ρ, T

8 1, 3, 8 t, v/y, ρy2(1−ω), Ty−2

9 1, 3, 4 t, tv − y, ρ, T

10 1, 2, 3 t, v, ρ, T

The optimal system of subalgebras of the Lie algebra L8 was constructed in [2]. We consider solutions
that can be constructed on the basis of three-dimensional subalgebras. In this case, the simplest class of solutions
consists of invariant solutions of rank 0. All solutions of this kind for system (1.1)–(1.4) are described in [3]. A class
of solutions whose description involves more difficulties is the class of partially invariant solutions. The notion
of a regular, partially invariant solution was introduced in [4]. The goal of the present work is to study regular,
partially invariant solutions of rank 1 and defect 1 of system (1.1)–(1.4), which can be constructed on the basis of
three-dimensional subalgebras. In particular, a sufficient condition of their reducibility to invariant solutions of rank
1 described in [2] is proved. All solutions of this class with a linear dependence of the velocity-vector components
on spatial coordinates are also considered.

2. Partially Invariant Solutions Reducible to Invariant Solutions. Invariant solutions are much
more readily constructed than partially invariant solutions. Using criteria that allow one to eliminate invariant
solutions reducible to partially invariant solutions beforehand, one can construct nonreducible solutions directly.
A criterion of reduction of an arbitrary partially invariant manifold to an invariant manifold was proved in [5]. It
is not always convenient, however, to apply this criterion in practice. Therefore, it is important to prove particular
theorems formulating sufficient conditions. The known Ovsyannikov’s theorem [6, Theorem 22.7] is inapplicable in
most cases to systems of differential equations of the second order. In the present work, we consider the issue of
reducibility of regular, partially invariant solutions of rank 1 and defect 1 of equations of plane motion of a viscous
heat-conducting perfect gas. A similar problem for axisymmetric motion of the gas was considered in [7].

As there is a correspondence between the Lie algebras and the Lie groups of transformations, we further use
both notions without specific comments on the area of applicability of each notion. The group of transformations
corresponding to the Lie algebra L8 is denoted by G8.

Theorem 1. If the universal invariant of the subgroup H ⊂ G8 can be chosen in the form

J = (ξ(t, x, y), A(t, x, y)u +B(t, x, y)v + C(t, x, y), D(t, x, y)ρ,E(t, x, y)T ), (2.1)

where ξ, A, B, C, D, and E are some functions, the corresponding regular, partially invariant H-solution of rank
1 and defect 1 of system (1.1)–(1.4) is reducible to an invariant solution.

Proof. It is known that the rank and defect of a partially invariant solution are invariant with respect to a
similarity transformation of subgroups. An analysis of invariants of all subgroups shows that satisfaction of condition
(2.1) for each subgroup is also invariant with respect to a similarity transformation of subgroups. Therefore, it is
sufficient to prove the theorem only for subgroups from the optimal system of subgroups. Table 1 contains all
subgroups that satisfy condition (2.1). For convenience, subgroup H is identified by the basis of the corresponding
Lie algebra (only the operator number is indicated instead of the operator itself; for instance, 7 + α8 indicates the
operator X7 + αX8). Subgroup invariants are listed in column J .
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TABLE 2

Subgroup

number
H ju

1, −αβ3 + 7 + α8 (α �= 0) (u − β)t−α

1
1, α3 + 7 u − α ln t

3, (α + 1)β1 + 7 + α8 (α �= −1) (ut − x − β)t−α−1

3, −α1 + 7 − 8 ut − x − α ln t

2
1, α3 + 2 + 7 − 8 (u − α)t

3, −α1 + 2 + 7 − 8 ut − x − α ln t

3
1, α3 + 4 + 7 u − α ln t

3, α1 + 4 + 7 (tu − x − α)/t

4 1, α3 + 4 + 6 u − αt

5 1, −α3 + 6 + 8 (u − α) e−t

6 1, −α3 + 6 − 8 (u − α) et

7 1, α3 + 6 u − αt

8 α1 + 3, β3 + 8 ((t + α)u − x − β)/y

9 α1 + 3, −β1 + 4 t(t + α)u − tx − βy

10 β1 − 2, α1 + 3 (t + α)u − x − βy

We present the general scheme of the theorem proof. For each subgroup in Table 1, the invariants define the
form of solution presentation. For ∂ξ/∂y �= 0, Eq. (1.3) yields the expression

u(t, x, y) = ϕ(ξ)x/t+ w(t, ξ) (2.2)

or

u(t, x, y) = ϕ(ξ)x + w(t, ξ). (2.3)

Then, Eq. (1.4) takes the form

F (ξ) +
(
f1(t)ϕ′x+ f2(t)

∂w

∂ξ

)2

= 0, (2.4)

where F , f1, and f2 are known (specific for each subgroup) functions of the indicated arguments. It follows from
Eq. (2.4) that

ϕ′ = 0, 2f2
∂w

∂ξ

(
f ′
2

∂w

∂ξ
+ f2

∂2w

∂t ∂ξ

)
= 0. (2.5)

For ξ = t, we obtain u(t, x, y) = ϕ(t)x + w(t, y) instead of (2.2) or (2.3) and F (t) + (∂w/∂y)2 = 0 instead of (2.4),
which yields

2
∂w

∂y

∂2w

∂y2
= 0. (2.6)

The integrals of Eqs. (2.5) or (2.6) are used to analyze Eq. (1.1). As a result, we obtain a presentation for u,
which allows us to find a two-dimensional subgroup with respect to which the solution constructed is invariant. All
such subgroups are listed in Table 2. The first column indicates the subgroup number from Table 1, and the second
column contains the bases of the corresponding two-dimensional subgroups. The constants can take all real values,
except for specially indicated cases. The third column shows an additional invariant of subgroup H , which is absent
for the corresponding three-dimensional subgroup (all other invariants coincide). The proof for each subgroup is
not given here.

3. Solutions with a Linear Velocity Field. There are eight series of three-dimensional subgroups
that do not satisfy the necessary condition of existence of the invariant solution or the condition of the above-
described theorem. All of them are listed in Table 3. If regular, partially invariant solutions of rank 1 and defect 1
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TABLE 3

Subgroup

number
H J

1 1, 2, 8 t, v/u, ρu2(1−ω), Tu−2

2 α1 + 2, 3, 8 t, (tu − x + αy)/v, ρv2(1−ω), Tv−2

3 1, 2, 5 t, u2 + v2, ρ, T

4 3, 4, 5 t, (ut − x)2 + (vt − y)2, ρ, T

5 1, 2, 5 + α8

(α �= 0)

ω �= 1:

t,

(
u sin

ln ρ

2α(ω − 1)
+ v cos

ln ρ

2α(ω − 1)

)
ρ1/(2−2ω),

(
u cos

ln ρ

2α(ω − 1)
− v sin

ln ρ

2α(ω − 1)

)
ρ1/(2−2ω), Tρ1/(1−ω)

ω = 1:

t,

(
u sin

ln T

2α
+ v cos

lnT

2α

)
T−1/2,

(
u cos

ln T

2α
− v sin

lnT

2α

)
T−1/2, ρ

6 3, 4, 5 + α8

(α �= 0)

ω �= 1:(
(ut − x) sin

ln ρ

2α(ω − 1)
+ (vt − y) cos

ln ρ

2α(ω − 1)

)
ρ1/(2−2ω),

(
(ut − x) cos

ln ρ

2α(ω − 1)
− (vt − y) sin

ln ρ

2α(ω − 1)

)
ρ1/(2−2ω),

t, Tρ1/(1−ω)

ω = 1:

t,

(
(ut − x) sin

lnT

2α
+ (vt − y) cos

ln T

2α

)
T−1/2,

(
(ut − x) cos

ln T

2α
− (vt − y) sin

ln T

2α

)
T−1/2, ρ

7 1, 6, 7 − 8 y, v/u, ρu1−2ω, Tu−2

8 5 + α8, 6, 7 − 8

√
x2 + y2 exp (α arctan (y/x)), (ux + vy)/(vx − uy),√
x2 + y2 (u2 + v2)1/2−ωρ, T (x2 + y2)/(ux + vy)2

reducible to invariant solutions do exist, they can be constructed only on the basis of subgroups listed in Table 3.
A comprehensive study of such solutions requires the use of the theories of compatibility analysis of systems of
partial derivatives [8, 9]. Such an analysis has not been performed for the above-mentioned eight subgroups, and we
confine ourselves to a particular case, namely, to solutions with a linear dependence of the velocity field on spatial
coordinates (we will use the term “linear” for such a velocity field for brevity). This kind of motion of continuous
media has been considered in numerous papers (see, e.g., a brief review in [10]). Moreover, a more general class of
solutions has been studied, namely, solutions with a linear dependence of the velocity field on some of the spatial
coordinates (see [11] and the references therein).

Subgroup 1. The solution is presented as

u = u(t, x, y), v = v1(t)u, ρ = ρ1(t)u2(ω−1), T = T1(t)u2. (3.1)

The condition of velocity-field linearity is

u = u1(t)x+ u2(t)y + u3(t). (3.2)
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Substituting Eqs. (3.1) and (3.2) into system (1.1)–(1.4) and splitting the latter with respect to the variables x
and y, we obtain a system of the form

du1

u1
=
du2

u2
=
du3

u3
= U dt,

dv1
dt

= V,
dρ1

dt
= �,

dT1

dt
= Θ, (3.3)

where U , V , �, and Θ are known functions of u1, u2, u3, v1, ρ1, and T1. Ovsyannikov’s theorem predicts that the
solution of system (3.3) is reducible to an invariant solution. A particular form of the subgroup with respect to
which the solution is invariant is determined after the constants of integration of system (3.3) are prescribed.

Subgroup 2. The solution is presented as

u = (vu1(t) + x− αy)/t, v = v(t, x, y), ρ = ρ1(t)v2(ω−1), T = T1(t)v2. (3.4)

The condition of velocity-field linearity is

v = v1(t)x+ v2(t)y + v3(t). (3.5)

Substituting Eqs. (3.4) and (3.5) into system (1.1)–(1.4) and splitting the latter with respect to the variables x
and y, we obtain a system of the form

du1

dt
= U,

dv1
dt

+
u1v1 + 1

t
v1 = v1V,

dv2
dt

+
u1v2 − α

t
v1 = v2V,

dv3
dt

+
u1v3
t

v1 = v3V,
dρ1

dt
= �,

dT1

dt
= Θ,

where U , V , �, and Θ are known functions of u1, v1, v2, v3, ρ1, and T1. Ovsyannikov’s theorem predicts that the
solution is reducible to an invariant solution.

Subgroup 3. The solution is presented as

u2 + v2 = q2(t), ρ = ρ(t), T = T (t).

The linear velocity field is described as

u = u1(t)x+ u2(t)y + u3(t), v = v1(t)x+ v2(t)y + v3(t).

We have

(u1x+ u2y + u3)2 + (v1x+ v2y + v3)2 = q2,

which yields, after splitting with respect to x and y,

u1 ≡ 0, v1 ≡ 0, u2 ≡ 0, v2 ≡ 0, u2
3 + v2

3 = q2.

The solution obtained is invariant with respect to the subgroup {X1, X2}. Reducibility is proved.
Subgroup 4. The solution is presented as

(ut− x)2 + (vt− y)2 = q2(t), ρ = ρ(t), T = T (t). (3.6)

The linear velocity field is described as

u = u1(t)x+ u2(t)y + u3(t), v = v1(t)x+ v2(t)y + v3(t). (3.7)

Substituting Eq. (3.7) into the first equation in (3.6) and splitting it with respect to x and y, we obtain

u1t− 1 = 0, v2t− 1 = 0, u2 ≡ 0, v1 ≡ 0, (u2
3 + v2

3)t2 = q2.

The solution obtained is invariant with respect to the subgroup {X3, X4}. Reducibility is proved.
Subgroup 5 (ω �= 1). The solution is presented as

u = ρ1/(2ω−2)
(
ϕ(t) sin

ln ρ
2α(ω − 1)

+ ψ(t) cos
ln ρ

2α(ω − 1)

)
≡ U(t, ρ),

v = ρ1/(2ω−2)
(
ϕ(t) cos

ln ρ
2α(ω − 1)

− ψ(t) sin
ln ρ

2α(ω − 1)

)
≡ V (t, ρ),

T = T1(t)ρ1/(ω−1), ρ = ρ(t, x, y).
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The linear velocity field is described as

uxx = uxy = uyy = vxx = vxy = vyy = 0. (3.8)

As we have
∂U

∂ρ
=

αU + V

2α(ω − 1)ρ
,

∂V

∂ρ
=

αV − U

2α(ω − 1)ρ
,

system (3.8) acquires the form

Aρρxx +Bρ2
x = 0, Aρρxy +Bρxρy = 0, Aρρyy +Bρ2

y = 0,

Cρρxx +Dρ2
x = 0, Cρρxy +Dρxρy = 0, Cρρyy +Dρ2

y = 0,

A = 2(ω − 1)(αU + V ), B = ((3 − 2ω)α− 1/α)U + 2(2 − ω)V,
(3.9)

C = 2(ω − 1)(αV − U), D = 2(ω − 2)U + ((3 − 2ω)α− 1/α)V.

The compatibility conditions of system (3.9) are

(U2 + V 2)ρx = 0, (U2 + V 2)ρy = 0.

For ρx = ρy = 0, we have u = u(t), v = v(t), ρ = ρ(t), and T = T (t), i.e., the solution is invariant with respect to
the subgroup {X1, X2}. For U2 + V 2 = 0, we obtain a quiescent state: u = v = 0. If ω �= 0, system (1.1)–(1.4)
yields ρ ≡ const and T ≡ const, i.e., the solution is invariant with respect to the subgroup {X1, X2}. For ω = 0,
the solution of system (1.1)–(1.4) is recovered from the solution τ(x, y) of the equation

κ(τxx + τyy) = cV q

by the formulas
u = 0, v = 0, ρ = τ−1, T = T0eqtτ, q ≡ const.

Reduction to a solution invariant with respect to some two-dimensional subgroup of the group {X1, X2, X5 +αX8}
can be performed only in two cases. In the first, trivial, case (τ ≡ const and q = 0), the solution is invariant with
respect to the subgroup {X1, X2}. In the second case with

τ =
cV q

4κ

(x2 + y2) + a10x+ a01y +
κ

cV q
(a2

10 + a2
01), q �= 0, a2

10 + a2
01 �= 0,

the solution is reducible to a solution invariant with respect to the subgroup {aX1 +X5 + αX8, bX1 +X5 + αX8},
where a = (2κ/(cV q))(a01 +αa10) and b = (2κ/(cV q))(αa01 − a10). In all other cases, the solution is nonreducible.
(It should be noted that, in the case a2

10+a2
01 �= 0, the solution is invariant with respect to the subgroup {X5+αX8}

but no reduction occurs, because the rank of the solution increases.)
Subgroup 5 (ω = 1). The solution is presented as

u = T 1/2
(
ϕ(t) sin

lnT
2α

+ ψ(t) cos
lnT
2α

)
≡ U(t, T ),

v = T 1/2
(
ϕ(t) cos

lnT
2α

− ψ(t) sin
lnT
2α

)
≡ V (t, T ),

ρ = ρ(t), T = T (t, x, y).

We have
∂U

∂T
=
αU + V

2αT
,

∂V

∂T
=
αV − U

2αT
.

The condition of velocity-field linearity takes the form

ATTxx +BT 2
x = 0, ATTxy +BTxTy = 0, ATTyy +BT 2

y = 0,

CTTxx +DT 2
x = 0, CTTxy +DTxTy = 0, CTTyy +DT 2

y = 0,

A = 2α(αU + V ), B = −(α2 + 1)U,
(3.10)

C = 2α(αV − U), D = −(α2 + 1)V.
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The compatibility conditions of system (3.10) are

(U2 + V 2)Tx = 0, (U2 + V 2)Ty = 0.

In this case, all solutions of system (1.1)–(1.4) are invariant with respect to the subgroup {X1, X2}.
Subgroup 6 (ω �= 1). The solution is presented as

u =
1
t
ρ1/(2ω−2)

(
ϕ(t) sin

ln ρ
2α(ω − 1)

+ ψ(t) cos
ln ρ

2α(ω − 1)

)
+
x

t
≡ U(t, x, ρ),

v =
1
t
ρ1/(2ω−2)

(
ϕ(t) cos

ln ρ
2α(ω − 1)

− ψ(t) sin
ln ρ

2α(ω − 1)

)
+
y

t
≡ V (t, y, ρ),

T = T1(t)ρ1/(ω−1), ρ = ρ(t, x, y).

We have
∂U

∂ρ
=
t(αU + V ) − (αx + y)

2α(ω − 1)tρ
,

∂V

∂ρ
=
t(αV − U) − (αy − x)

2α(ω − 1)tρ
.

The condition of velocity-field linearity reduces to the system

Aρρxx +Bρ2
x = 0, Aρρxy +Bρxρy = 0, Aρρyy +Bρ2

y = 0,

Cρρxx +Dρ2
x = 0, Cρρxy +Dρxρy = 0, Cρρyy +Dρ2

y = 0,

A = (αU + V )t− (αx + y), C = (αV − U)t− (αy − x), (3.11)

B =
(α2 − 2α(ω − 1) − 1)(Ut− x) + 2(α− ω + 1)(V t− y)

2(ω − 1)
,

D =
(α2 − 2α(ω − 1) − 1)(V t− y) − 2(α− ω + 1)(Ut− x)

2(ω − 1)
.

The compatibility conditions of system (3.11) are

((Ut− x)2 + (V t− y)2)ρx = 0, ((Ut− x)2 + (V t− y)2)ρy = 0.

For ρx = ρy = 0, we have

u = u1(t) + x/t, v = v1(t) + y/t, ρ = ρ(t), T = T (t),

i.e., the solution is invariant with respect to the subgroup {X3, X4}.
We consider the case u = x/t, v = y/t, ρ = ρ(t, x, y), and ρ2

x + ρ2
y �= 0. Equations (1.1)–(1.3) acquire the

form

ω(2(l0 +m0)Tω−1
1 −Rt) = 0, tρt + xρx + yρy + 2ρ = 0.

For ω = 0, the solution of system (1.1)–(1.4) is recovered from the solution Ψ(ξ, η), T1(t) of the system

Ψξξ + Ψηη = A,
cV (t2T1)′ − 4(l0 +m0)

t2T1
= Ak0 − 2R

t
, A ≡ const

by the formulas

u = ξ, v = η, ρ =
1
t2Ψ

, T = t2T1Ψ, ξ =
x

t
, η =

y

t
.

Reduction to a solution invariant with respect to some two-dimensional subgroup of the group {X3, X4, X5 +αX8}
can be performed in two cases only. In the first, trivial, case (Ψ ≡ const and A = 0), the solution is invariant with
respect to the subgroup {X3, X4}. In the second case with

Ψ = A(ξ2 + η2)/4 + a10ξ + a01η + 2(a2
10 + a2

01)/A, A �= 0, a2
10 + a2

01 �= 0,

the solution is reduced to a solution invariant with respect to the subgroup {aX3 +X5 + αX8, bX4 +X5 + αX8},
where a = 2(a01 + αa10)/A and b = 2(αa01 − a10)/A. No reduction occurs in all other cases.
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For ω �= 0, there exist no solutions that satisfy condition (1.5).
Subgroup 6 (ω = 1). The solution is presented as

u =
1
t
T 1/2

(
ϕ(t) sin

lnT
2α

+ ψ(t) cos
lnT
2α

)
+
x

t
≡ U(t, x, T ),

v =
1
t
T 1/2

(
ϕ(t) cos

lnT
2α

− ψ(t) sin
lnT
2α

)
+
y

t
≡ V (t, y, T ),

ρ = ρ(t), T = T (t, x, y).

We have

∂U

∂T
=
α(Ut− x) + (V t− y)

2αtT
,

∂V

∂T
=
α(V t− y) − (Ut− x)

2αtT
.

The condition of velocity-field linearity reduces to the system

ATTxx +BT 2
x = 0, ATTxy +BTxTy = 0, ATTyy +BT 2

y = 0,

CTTxx +DT 2
x = 0, CTTxy +DTxTy = 0, CTTyy +DT 2

y = 0,

A = 2(α(Ut− x) + (V t− y)), B = −(α+ 1/α)(Ut− x),
(3.12)

C = 2(α(V t− y) − (Ut− x)), D = −(α+ 1/α)(V t− y).

The compatibility conditions of system (3.12) are

((Ut− x)2 + (V t− y)2)Tx = 0, ((Ut− x)2 + (V t− y)2)Ty = 0.

In this case, the only solution of system (1.1)–(1.4) that satisfies condition (1.5) has the form

u = u1(t) + x/t, v = v1(t) + y/t, ρ = ρ(t), T = T (t),

i.e., the solution is invariant with respect to the subgroup {X3, X4}.
Subgroup 7. The solution is presented as

u = u(t, x, y), v = uv1(y), ρ = u2ω−1ρ1(y), T = u2T1(y).

An analysis of velocity-field linearity yields one of the three presentations of the velocity-vector components:

1) u = u1(t)x + u2(t)y + u3(t), v = v0(u1(t)x + u2(t)y + u3(t));

2) u = (y + u0)u1(t), v = (v0 + v01(y + u0))u1;

3) u = u(t), v = (v0y + v01)u.

In case 1, all solutions either are a subset of solutions in case 2 or do not satisfy condition (1.5). In case 2,
all solutions are reducible to solutions invariant with respect to the subgroup {X1, αX6 + β(X7 −X8)}. In case 3,
the solution is reducible to a solution invariant with respect to the subgroup {X1, X6}.

Subgroup 8. The solution is presented as

ux+ vy

vx− uy
= Q(ξ), ρ =

(u2 + v2)ω−1/2√
x2 + y2

ρ1(ξ), T =
(ux+ vy)2

x2 + y2
T1(ξ),

ξ =
√
x2 + y2 exp (α arctan (y/x)).

As the function Q(ξ) is independent of t, we can readily obtain the presentation for the velocity components
in the case of a linear velocity field:

u = (u01x+ u02y + u03)w(t), v = (v01x+ v02y + v03)w(t).
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A further analysis shows that Eq. (1.4) takes the form

dw

dt
+ F (x, y, ξ)w2 = 0,

where F is a known function. Integration of the last equation yields the presentation for the function w

w(t) = 1/(w0t+ w01).

The solution obtained is reducible to a solution invariant with respect to the subgroup {X5 +αX8, w01X6 +w0(X7

−X8)}.
Conclusions. Thus, we proved a sufficient condition of reducibility of partially invariant solutions of rank

1 and defect 1 of equations of plane motion of a viscous heat-conducting perfect gas. It is also shown that the
solutions of system (1.1)–(1.4) with uniform deformation contain only two partially invariant solutions of rank 1
and defect 1 that are not reducible to invariant solutions. The first solution is of no special interest because it
describes the distribution of thermodynamic parameters in a quiescent gas. The second solution is recovered from
the solution of the Poisson equation. The initial-boundary problems for system (1.1)–(1.4) are easily reduced to a
boundary-value problem for the Poisson equation. Setting the velocity at the boundary has to be correlated with
the solution. Setting the temperature at the domain boundary corresponds to the Dirichlet problem, and setting
the flux of temperature corresponds to the Neumann problem; mixed problems are also possible. Elliptic equations
in the domain with a curvilinear boundary can be solved numerically with extremely high accuracy [12]. Therefore,
the new solution of system (1.1)–(1.4) is obtained numerically with arbitrary required accuracy and can be used
as a test for formulas, algorithms, and their program implementation in development of numerical methods and
computational codes.

It should be noted that the new solutions are principally different from the known solutions with a linear
dependence of the velocity vector on some of the spatial coordinates, which were obtained in [11] for equations
of dynamics of a viscous incompressible heat-conducting fluid and isentropic flows of a compressible gas with a
polytropic equation of state. Previously, all thermodynamic parameters (temperature, pressure, entropy, etc.) in
all solutions depended linearly or quadratically on some of the spatial coordinates. These restrictions were not
imposed in the present work. As a result, we managed to obtain solutions where the dependence of temperature on
the spatial coordinates is more complicated than a polynomial curve (described by solving the Poisson equations).
Solutions with a linear dependence of temperature on the spatial coordinates are obtained as a particular case of
new solutions being constructed; it is also proved that all of them (as well as solutions with a quadratic dependence
of temperature on the spatial coordinates) are reducible to invariant solutions.

This work was supported by the Russian Foundation for Basic Research (Grant No. 06-01-00080) and by
the Program for supporting the leading scientific schools in Russia (Grant No. NSh-8732.2006.1).
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